808 research outputs found

    Perfect optomechanically induced transparency in two-cavity optomechanics

    Full text link
    Here, we study the controllable optical responses in a two-cavity optomechanical system, especially on the perfect\mathit{perfect} optomechanically induced transparency (OMIT) in the model which has never been studied before. The results show that the perfect OMIT can still occur even with a large mechanical damping rate, and at the perfect transparency window the long-lived slow light can be achieved. In addition, we find that the conversion between the perfect OMIT and optomechanically induced absorption can be easily achieved just by adjusting the driving field strength of the second cavity. We believe that the results can be used to control optical transmission in modern optical networks.Comment: 8 pages, 9 figure

    A Real-time Range Finding System with Binocular Stereo Vision

    Get PDF
    To acquire range information for mobile robots, a TMS320DM642 DSP-based range finding system with binocular stereo vision is proposed. Firstly, paired images of the target are captured and a Gaussian filter, as well as improved Sobel kernels, are achieved. Secondly, a feature-based local stereo matching algorithm is performed so that the space location of the target can be determined. Finally, in order to improve the reliability and robustness of the stereo matching algorithm under complex conditions, the confidence filter and the left-right consistency filter are investigated to eliminate the mismatching points. In addition, the range finding algorithm is implemented in the DSP/BIOS operating system to gain real-time control. Experimental results show that the average accuracy of range finding is more than 99% for measuring single-point distances equal to 120cm in the simple scenario and the algorithm takes about 39ms for ranging a time in a complex scenario. The effectivity, as well as the feasibility, of the proposed range finding system are verified

    2-tert-Butyl-6-[(4-chloro-2-nitro­phen­yl)diazen­yl]-4-methylphenol

    Get PDF
    In the title compound, C17H18ClN3O3, the dihedral angle between the planes of the two benzene rings is 1.03 (7)°. The overall conformation of the mol­ecule is influenced, in part, by electron delocalization and by an intra­molecular bifurcated O—H⋯(O,N) hydrogen bonds. The O atoms of the nitro group, one of which serves as an H bond acceptor, are disordered over two sets of sites with refined occupancies of 0.56 (3) and 0.44 (3)

    Berry connection polarizability tensor and third-order Hall effect

    Full text link
    One big achievement in modern condensed matter physics is the recognition of the importance of various band geometric quantities in physical effects. As prominent examples, Berry curvature and Berry curvature dipole are connected to the linear and the second-order Hall effects, respectively. Here, we show that the Berry connection polarizability (BCP) tensor, as another intrinsic band geometric quantity, plays a key role in the third-order Hall effect. Based on the extended semiclassical formalism, we develop a theory for the third-order charge transport and derive explicit formulas for the third-order conductivity. Our theory is applied to the two-dimensional (2D) Dirac model to investigate the essential features of BCP and the third-order Hall response. We further demonstrate the combination of our theory with the first-principles calculations to study a concrete material system, the monolayer FeSe. Our work establishes a foundation for the study of third-order transport effects, and reveals the third-order Hall effect as a tool for characterizing a large class of materials and for probing the BCP in band structure.Comment: 7 pages, 4 figure

    Synthesis and photocatalytic activity of hierarchical flower-like SrTiO3 nanostructure

    Get PDF
    • …
    corecore